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In the general case, the determination of the unloading wave shape [l] in the the- 

ory of elastic plastic wave propagation is reduced to the solution of a functional 
equation of complex structure. A characteristics method [2] is proposed for the 
approximate co~~ction of the unloading wave, in particular loading cases for- 
mulas are obtained to determine its initial slope [3] and the next derivatives at 
the initial point [4 - S]. An investigation of the general properties of an unload- 
ing wave is given in [7]. It is shown that as the load tends to zero asymptotically, 
the unloading wave at the end of a semi-infinite bar has an asymptote with a 
slope determined by the elastic wave velocity. 

An ~vestigation of the ~nctional equation is given in this paper and a method 
of solution of this equation in the form of a power series is proposed. This ap- 
proach to the problem permits obtaining both known and some new results. In the 

general loading case, formulas are obtained to determine the initial slope of the 
unloading wave and a method of determining the next derivatives at the initial 
point is indicated. Conditions are found for linear hardening for which the unr 
loading wave is a straight line. The existence of an ~ympto~.~fferent from 
those mentioned in [7] is proved ; it is shown how to continue the solution to ad- 
jacent sections by means of some known section, and an unloading wave in a 
material with delayed yielding is investigated. 
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1. Sy:trm of functional equrtion, for arbitrrry hardening, bet 
US consider a semi-infinite bar 2 > () on whose end x = 0 a load is given in terms 
of the strain 

n, (0, t) = f (Q (1.1) 

f (0) e 88, f’ (t) > 0, 0 Q t < t,; f’ (t> < 0, t> t, 

Here u (x, t) is the longitudinal displacement of the particle, u, = &,J / ax. 
Let the dependence between the stress CT and the active strain p, be given as o = 

@ (E), @’ (8) > 0, CD” (8) (0, e, is the elastic strain limit. A linear dependence 
o - o,, = E (8 - Q,), where E is Young’s modulus and (JO = 6, (Ed) , is taken for 
unloading from the strain ~~ > E, . 

In the region of active elastic-plastic strains the solution of the equation of motion 

a2u Lx* = ntt (a” = @’ (a) / p) 

with zero initial data and the boundary condition (1. 1) is represented in implicit form as 

% 
ux=f t-L% 

( > ~kc) ’ Ut = - * U(E) de 3 - 4 (u,) s 
(1.2) 

If the unloading wave x = cp (t) (for cp (to) 2 0) is the front of a strong discontinu- 

ity, then it is a straight line x = a, (t - to); a0 2 = E / p [8, 91. Here,the most in- 
teresting case of a curvilinear unloading wave, which is the front of a weak discontinuity, 

is investigated. 
In the passive strain region z ( cp (t), t > to the motion parameters are determined 

from the solution of the problem 

Utt =-(l&*x + f 2 - 2 deo 
ao ax (1.3) 

ux (0, t> = f (t) (1.4) 

uJ2) = u,(l) G e, (ST), U*(a) = Q(l), t zzz cp (t) (1.5) 

where the superscripts 1 and 2 refer to the active and passive strain domains, respectiv- 
ely, & (x) = Q, (Ed) and 8, (2) are 
values of the stress and strain on the 

unloading wave. 

f(t) E,,, Es Fig. 1 
X 

bet us consider the curvilinear trian- 

gle AMN (Fig. l), where N (cp (zi), 
zi) and M (cp (~a), z2) are the points 

of intersection of the unloading wave 
shown by the heavy line, and the char- 
acteristics of positive and negative 
slope emerging from some point A (0, 
t) for t > to. Along the character- 

istics of Eq. (1.3) with regard to (l-5), 
the following relations can be obtained: 

oo (Cp (ri)) / f’ao + $ (e, [Cp (ri)]) = a&, - ut + (o, - EEO) / pa, (1.6) 

“0 (9 (%)) / PO -$ (eo [rp (%)I) = aon, + ut + (a, - E&J / pa, (1.7) 
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Applying the equalities (1.6) and (1.7) at the common point A, where U, = f (t), and 
adding them ,with (1.2) taken into account for ut, we obtain 

Here E, = eo (0) = f (4J . * 1s e maximum strain at the end of the bar. 
According to (1.2). the conditions (1.5) in application to the points N and kf, become 

(1.10) 

Finally, according to definition (Fig, 1) , we have 

r1 - t = cp (71) / us, r - rs = cp (7s) / a, (1. 11) 

We shall consider the equalities (1.8) - (1.11) as a system of functionaI equations in 

the unknown functions cp (t), ri (t), r, (t) and e, (2). Hence,(l. 9) and (1.10) are sub- 

stantially identical and written differently for convenience. The solution of the system 

(1.8) - ( 1.11) determines the unloading wave z = 9 (t) and the value of the strain 
&o (z) thereon. 

We investigate the asymptotic behvior of the unloading wave, Let us note that the 

right side in (l.8) equals 2p (t) / pa,, where p (t) is the stress at the end of the bar. 
As rr --t a, let the quantities t and us tend to infinity, Then e, (cp (rr)) and 

&o (v (r2)) tend to a finite limit e, > e,. Passing to the limit in ( 1.8), we obtain 

If 0 < p (oo) ( ad, then the equality obtained is contradictory, hence as rr + 00 

the quantity t tends to the finite Unit r* and the straight Iine z = a, (t - t*) is 
the asymptote to which the curve z = rp (t) tends from below. Hence E* = e, on the 

unloading wave at infinity. This case is similar to that examined in [?I. 

If p (00) > us, then it follows from the equality obtained that cr* = p (oo), 
where o, is the stress on the unloading wave at infinity. In this case the unloading wave 

tends to the asymptote x = a (f (t,J)(t - t,,) from above, where t,, ( t, is the 
instant at which p (t*.,J = p (oo). 

2. Dot8rmlnrtion of the lnitlrl unloading wave valoolty. The 

initial velocity of unloading wave propagation c r = cp’ (to) depends on the behavior 
of the load function f (t) in the neighborhood of the beginning of the unloading. Let 
us examine several cases. 

1) Let to be a point of discontinuity of j’ (t), i.e. 

f’ (to - O)=a,>O, P(to+0)=%<0 

Differentiating (1.8) with respect to t we obtain 
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%’ lip (G>) cp’ N2) g = %,f’ (0, b (‘6) = a 6% [cp (z)l) 

The derivatives E,,’ , oh, / dt, d$ / ~8 in (2.1) are determined from the relationships 
(1.9) - (1.11) differentiated with respect to t. The relationships 

cp (%I -to, (P (r2> -+o, 80 ('p (4) +f (&J, 80 (9 h)> +f (GJ 

b (4 +a tf (4,N = ap, b (~2) +a (f @o)) = up 

ho ((P @)I ---, u1 a0 UP - Cl -- 
at up a0 - cl ’ Cl # a0 

hold in these differentiated equalities for t, zr, ~2, tending to to f 0 , 
Letting t tend to t, f 0 in (2.1) and taking account of the limit values obtained, 

we find 

Cl = I(q)” - ?nup2) / (1 - m)]‘~* 

This formula has been obtained by another method in [3, 8, 93. 
2) We construct an equation for cl in the case when 

f(n) (t, + 0) c f’“’ (t, - 0) =I” 0, f@’ (to) = 0, 1 < P < n - 1 

where n is even and fen) (E,) < 0, since f (t) has a maximum at t = t,. 
Differentiating the equalities (1.8) - (1.11) n times with respect to t and passing to 

the limit as t -+ t, + 0, we obtain similarly to the preceding, an equation of degree 

2n in Cl 

P (Cl) = (-$r(+ - CIY I@0 + an> (es + Cl)% - (2.3) 

(a0 - up)@0 - cl)*] - 2ao(a,2 - C# = 0 

The quantity ~1 satisfies the inequalities an , r , O, < c < a hence P (a,) (0, P (%I)> 
0 and P’ (cl) > 0. Co~quen~y,Eq,(2.3) has one real root in the interval (apt as)+ 

3) Now let us consider the case when f@) (t) has a discontinuity at the point to 

f’“’ (to - 0) = 01 # 0, f’“’ (to + 0) = fi # 0 

f(P) (to) = 0, l,<p,(n--l 

Here o, < 0, fi < 0 for n even and a> 0, p < 0 for n odd. Analogously to the 
preceding, we obtain an equation for c, 

u. (~)*[(‘~),*-~~ (s)n]= “P(:;;+) (2.4) 

which has one real root in the interval (en, aa) and yields the value (2.2) for cl at n = 1. 



Analytical investigation of the unloading wave 305 

If the stress p (t) is given at the end of the bar and this function is of the form des- 
cribed above in the analysis of the 2nd case, then because of the difference in the ONE 
coupling laws for loading and unloading, the function f (t) has a discontinuous n -th 
derivative, where aups; = fia,a. Hence we obtain the equation 

(2.5) 

from (2.4) to determine Cl , which becomes for n = 2 

$2 l$&” + 2a&, - 3a,%*) = 0 

A positive root of this equation is 

cl= Bs[($ +3j’*+] 

This formula has been obtained by another method in [3, 91. 

4)Let f(“~(t,-O)=a#O,f(p)(tO-O)=O forI\(p\<n-1,where 
a (0 for n even, CC> 0 for n odd, and f(Q (to + 0) s p (0, j(p) (t, + 0) = 0 
forI\<p\<k-1. 

a)Lf k = n, then cx is determined from (2.4). 
b) If k> n, then we have the equation 

(:I$ 
-~(~)“=o 

to determine cr , from which cl = up. 
c) Let k < n. Let us note that all the equations obtained above to determine cr = 

cp’ (to) have been derived under the assumption that CI # as. This assumption leads 
to a contradiction in the case under consideration. In fact, by diffe~ntiat~g the equal- 
ities (1.8) - (1.11) k times with respect to t and passing to the limit as t -+ to + 0, 
we obtain a contradictory equality. Therefore, c1 = a0 in this case. 

3. Analytical drtsrminotion of the unlordlng WLVO. We assume 
that the function cp (t) is representable as the Taylor series 

Let us show that by differentiating the functional equations (1.8) - (1.11) successively 
with respect to t and passing to the limit as t --f t, + 0, the values of the derivatives 
cp@) (to) of any order can be calculated. 

We introduce the notation 

&@,,=~(~+n(~))dl, A2(e*2)=i)$a(E))* 
0 0 

AJp’ = dP A&Ps,,, AZ(P) = PA, f i&~,,~ 

Differentiating (1.8) p times with respect to t, we find 
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(3.1) 

Uj, = d” 
k-l 

dtp hi, * ’ ’ 7 ujk = 2 (- i)i ( k ) %ji"$ t$” , . . . 
i=o 

. * * ) 

q,= (e!$)“; ( ; ) = 4k--$1. .;,~~--~C~) ) j_.f,Z 

It is here understood that the hardening curve 0 (8) is sufficiently smooth and generally 
has derivatives of any order for all values e > E$. 
We use the notation 

Q1= q-%$d, Qz=+-+, QI”’ = dpQi - 
dtP 

Utilizing the expressions for dt / dt and dz, / dt from (1.11) to evaluate the deriva- 
tives of QI and Qz with respect to t , we find 

Qlt=~~~$:~~;+~(t$$~ (3.2) 

Qi” = -$ (;;o~a’$~;l;;;’ + 2 s Iao “‘F&1 2 + 

cp (q) @nf; 2a1’2 (r!$J) 2 + ‘p (Tl) z$ @+ 

Q+z, ao3 (~~~~~~~~~~~) + 3g (aI- 4 yP" WI2 + . . * + 
ia0 - cp WI5 

'p (G,$d$ 

. . . . . . . . . 

Qz’ = % ~o~~,~~j -t rp @,) $- % 
a.....*............ 

Here terms containing the factors de,, f dt and dZEol I dtg have been omitted in the 

expressions for Q1". 
Differentiating the equalities (1.9) and (1.10) with respect to t, we obtain successively 

deal f at = f’ (Q&Q1 (3.3) 

‘2 = i” (QI) Qlt2 4 f’(QJ Q; 

2 = f”’ (Qd QI” + 3f" (QI) Qr’QII’ -t f’ (91) QI” 
*..* * *.* ..‘..... 

p = ftp) (Q1) Q;” + g,pf’P-“(Q1) &‘-‘QI” + . . . + f’(Qd Q?” ape.+1 

dCddt = f’ (Qd Qs 
*....*.*... 
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Let us examine the 2nd case described in Sect. 2 in detail. The reasoning for the re- 

maining cases (except the case c1 = ua) is similar. passing to the limit for t, r1 and 
rr tending to .t, + 0 in (3.2) and (3.3), we see that all the derivatives of ear and e,, 

with respect to t at the point t, , to the (n -i) -th order inclusive are zero, and we 

obtain for the n-th order derivatives 

Therefore, equalities of the form (3.1) to p = n - 1 inclusive, become identities 
under the mentioned passage to the limit, and for p = n , after having divided by 

f(“) (to) we arrive at (2.3) with respect to the first derivative c1 = cp’ (t,). 
Now, applying (3.3) for p = n + ‘I, we see that the limit values of the derivatives 

are 

(3.5) 

(3.6) 

where Ql,,' and QzO' contain the value already found for ts according to (3.2). and 

Q 10 ' and QZ,,” contain in addition to ci only c2 = cp” (t,) (but linearly). Therefore, 
an equality of the type (3.1) for p = n + 1 yields a linear algebraic equation in c, 
in the limit as t + t, + 0. Similarly, for p = n + 2 we obtain a linear lnhomoge- 
neous algebraic equation on cs = 9”’ (to). 

Therefore, successive use of limit equalities of the type (3.1) - (3.3) permits the eva- 
luation of any derivative cp(q) (to), i. e, the determination of any number of terms in 

the Taylor series. Analogous results have been obtained in [4] for the case when the curve 
f (t) has a salient point t,, . 

For linear hardening, when o = h’,e + (E - E,)E, for e > e,, the system of func- 
tional equations ( 1.8) - (1. 11) reduces to the following : 

(a, + al)f (T1- Jg) - (a0 - al) f (+ F) = (3.7) 

2.$ f(t) + 2 u*f(ta) 

Tl - t = cp (Tl) / a,, t - T, = cp (r2) / a, (3.8) 

where a, = (El/p)"% is the velocity of plastic strain propagation. 
It is clear that the mentioned procedure to determine the derivatives hence remains 

substantially unchanged and is simplified because a, is a constant. Formulas (2.2) - 
(2.6) retain their form with the replacement of upby a,. The linear hardening case has 
been investigated by another method in [S] . 

4. P&rticulrr loading CLN~B, We examine three particular cases of giving 
the loading curve at the end of the bar j (r). 

1) Let j (t) be a parabola of n-th degree 

j (1) = j 00) + q (f -lo)-, f”’ (1,) # 0, f(p) (to) = 0, p # n 
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Hence, equations of the form (3.1) with linear hardening become identities for p Q n - 
1 in the limit as t + t, + 0 . According to (3.2) and (3.3), for p = n we obtain Eq. 
(2.3) for cl = cp’ (t,). Finding ci from it and writing (3.1) for p = n + 1 in the limit 
as t --f to, we see that according to(3.6), a linear homogeneous equation is obtained for 

cZ = cp” (to), i.e. cz = 0. Similarly, we find that c$~) (to) = o for k > 1. 

Therefore, the unloading wave is a straight line in this case, whose slope is determined 
from (2.3). 

2) Let 

i 

I (to) + 5 (t - to)*, t d to 

f(t)= . 
f (to) + $ (t - to)*, f >, to 

where a < 0, @ > 0 for n even and a > 0, @ < 0 for n odd. Analogously to the 
above, we find that the unloading wave is a straight line. The solution in the form of a 
line has been found in [6] for n = 1 . 

Investigations of cases 1 and 2 refer only to that initial part of the unloading wave 
which corresponds to a decrease in the load to zero at the bar end. The case of loadsof 

opposite sign is not considered. If the load vanishes for t = tk > to , and then remains 
zero, then the unloading wave remains a straight line to the instant of time tp determined 
by the intersection of the lines 5 = c1 (t - to) and r = a0 (t- tk), i.e. to tp = (a& - 

c,t,) / (a* - c1). 

3) For an idealized explosive type load (f (0) = em > as, f’ (r) < 0) the unloading 
wave passes through the origin [9] of the (x, t) plane and the Riemann wave domain in 
which we have for the stretching effect 

u, = a -l (5 I 1), Ut = - * (J-k) 
is adjoining. 

The functional equations become 

2aof (0 + 6 I@ (em) - Eeml 

71 - t = tp (71) 1 %?, t - 'c2 = cp (z2) I ai? (4.2) 

Passing to the limit as t -+ 0 in (4.1) and taking into account that g, (ri) / r1 --f cp’ (0)) 
cp (Q) I za + cp’ (0), we obtain ci z cp’ (0) = a (a,). We differentiate (4.1) with respect 

to t and we pass to the limit as L + 0. Taking into account that 

(the prime denotes the derivative with respect to the argument in the parentheses), we 
obtain 
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Ca=f’(0)a’(E,)*-*2(s~) , caetp”(O) 
a2 Q-hn) 

Higher order derivatives can be evaluated in a similar manner, Analogous results have 
been obtained in [5] for this case. 

6. Continuation of the rolution, Limiting ourselves to linear hardening 
to keep the writing short, i.e. to the system of functional equations (3.7) and (3.8), we 
note that the results obtained below can be carried over to the case of arbitrary harden- 

ing without difficulty, i.e. to the systems (1.8) - (1.11) or (4, l), (4.2). Each of these 

t 

f E 

c gD 
t0 

~ 
3 

Fig. 2 

systems connects the values of z, and cp (zs) to the values of 
z1 and cp (-cl). Hence, if the value of cp (zs) has been deter- 
mined at the point B (Fig. 2), then the value of 9 (ti) can 

be obtained at the point D by a closure through the point C. 
Therefore, if the solution x = p, (t) is known on the section 

BD, cut off by characteristics with positive and negativeslope 
drawn from some point C of the time axis, then it can be con- 

tinued at both sides. For instance, we continue the solution of 

the system (3.7),(3.8) upward expressing 9, (Q) and zr from 
(3.7) and (3.8) in terms of fp (zs) and z2 

$ _ w32 + v (T-4 
1- a0 - al + ’ 

(5.1) 

Here f-l is a function reciprocal to f in the time interval it,, toI, where ts is the 
instant when plastic strains first appear on the end of the bar. If the function cp (us) is 
known on the section BD, then by substituting it into (5.1) we obtain parametric equa- 

tions for the function q (t) on the section DB, We then continue the solution beyond 
the segment L)E in the same manner,etc. 

If the curve x = QI (t) does not have a line with angular coefficient a, as its asym- 

ptote, then the solution can be continued to infinity by such segments as DE , Other- 
wise, the solution can be continued a finite number of steps. The downward continuation 

of the solution can be constructed analogously. 

6. Msterirl with delayed yielding, The dependences 

o=Es, ls16ar; Q=Es+ (E-Er)e, (t- $)* lEi>% 

for an active loading and 

o = u. + E (E - 8,) = EE + (E - E,) (Ed,, - %,I 

for unloading from the strain so are taken in a scheme with linear hardening [lo] for a 
material with delayed yielding as applied to the problem of elastic-plastic wave pro- 
pagation in a semi-infinite bar z > 0 . Here z = cp (t) is the equation of the unloading 
wave and aso = a, (cp-’ (5) - z / ao). The beginning of the unloading is determined by 
the requirement [ll] 

do I at 6 Ee6 (t - x / ao) 
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If a stress u (0, t) = f (t) is given at the end of the bar x < 0 , then the solution in the 

domain of active elastic-plastic strain is [lo] 

u,=p (t--E) fe, (t-it), F(t)=f(t)-EEEs(t) (6.1) 

u,=-ZF (t-i) -ag8 (t- -2) 

The motion in the unloading domain 2 < cp (t) is determined by the equation 

Utt = ao2uxr + (ao2 - a13 $ (es0 - 80) 

ao=VE, al= 1/E1/p 

Repeating the reasoning of Sect. 1, we obtain the system of equations 

(ao+al)F (,I -y) -(a0-al)F (r7,-9) -Z@(t) 

=1 - t = cp b-1) / a,, t - z2 = cp (T.J / a#J 

which goes over for E, = const into a system of equations for the unloading wave in a 
material without a delayed yielding when a stress is given at the end of the bar. 

The procedure for determining the derivatives ‘p’ (to), cp” (to), . . ., qdn) (to) is per- 

fectly analogous to that described in Sects. 2 and 3. In particular, the deduction that the 
unloading wave is a straight line for a function E‘ (t) in the form of an n-th order para- 

bola, is valid. 
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